Crystal and Molecular Structure of $((C_6H_5)_3P)_2$ -CuS₂MoS₂CuP(C₆H₅)₃·0.8CH₂Cl₂, a Compound with a Doubly Bridging MoS₄²⁻-Ligand between Cu-Centers

ACHIM MÜLLER, HARTMUT BÖGGE and UWE SCHIMANSKI

Faculty of Chemistry, University of Bielefeld, D-4800 Bielefeld, F.R.G.

Received July 8, 1980

The MoS_4^{2-} ion, which was first used by us as a ligand [1] in transition metal complexes plays a key role in some biological processes [2–5]. Zumft has shown that acid treatment of the FeMo protein of C. pasteurianum leads to MoS_4^{2-} [5]. On the other hand Cu^{n^*}/MoS_4^{2-} interactions have been claimed to be responsible for the Mo–Cu antagonism in biological processes [2–4]. The MoS_4^{2-} anion is the most effective antagonist of the copper metabolism [4]. In this paper we report the crystal and molecular structure of the title compound which is interesting as a model or Cu^{n^*}/MoS_4^{2-} ligand can act as a doubly and triply bridging one between Cu centers.

Experimental

Intensity data were collected from a crystal (0.15 \times 0.3 \times 0.5 mm) of (PPh₃)₃Cu₂MoS₄ • 0.8CH₂Cl₂ with a Syntex P2₁ four circle diffractometer. Single crystals were obtained with the method described in [6].

C₅₄ H₄₅ Cu₂ MoP₃ S₄ •0.8CH₂ Cl₂; monoclinic, space group $P2_1/c$: a = 18.394(4), b = 16.653(3), c =17.714(3) Å, $\beta = 95.53(1)^{\circ}$, V = 5400.9 Å³; Z = 4, $D_{\rm c} = 1.48 \text{ g cm}^{-3}$; μ (Mo-K $_{\alpha}$) = 13.9 cm⁻¹ The structure was solved by heavy atom methods. Least squares refinements (the phenyl rings being treated as regular hexagons, C-C = 1.395 Å) converged to R = 0.089 for 3699 independent reflexes ($4^{\circ} \le 2\theta \le$ 45° ; $I \ge 1.96\sigma(I)$). Disordered solvent molecules at occupancy 0.8 were included in the calculations (see Table I; in contrast to the pseudo-isostructural compound (PPh₃)₃Ag₂WS₄ [7] where solvent molecules of CH₂Cl₂ at lower occupancy were distributed over several positions which did not allow the location). Empirical absorption, Lorentz, polarization and anomalous dispersion corrections were applied.

Fig. 1. Molecular structure of $(PPh_3)_3Cu_2MoS_4 \cdot 0.8CH_2Cl_2$; phenyl rings have been omitted for clarity. Mo···Cu1 = 2.775(2), Mo···Cu2 = 2.642(3), Mo–S1 = 2.204(5), Mo–S2 = 2.217(5), Mo–S3 = 2.219(5), Mo–S4 = 2.192(5), Cu1–S1 = 2.311(5), Cu1–S4 = 2.315(6), Cu2–S2 = 2.228(5), Cu2–S3 = 2.212(5), Cu1–P1 = 2.310(5), Cu1–P2 = 2.295(5), Cu2–P3 = 2.210(5) A.

The positional and thermal parameters are summarized in Table I. Selected bond distances are given in Fig. 1, containing the ORTEP-plot.

Results and Discussion

The unit cell contains four $(PPh_3)_3 Cu_2 MoS_4$ molecules which are orientated nearly parallel to the baxis. The P1, P2, Cu1, Mo, S2, S3, Cu2 and P3 atoms lie approximately in one plane and the Cu1...Mo... Cu2-P3 moiety is nearly linear (Cu1...Mo...Cu2 = 179.0(1), Mo...Cu2-P3 = 176.1(2)°). The Mo atom is tetrahedrally coordinated (107.0(2)-110.9(2)°). The compound contains two non-equivalent Cu atoms. The coordination polyhedron of Cu1 is a distorted tetrahedron (100.4(2)-118.0(2)°), while the coordination of Cu2 is nearly trigonally planar (106.9(2)-129.9(2)°).

Species containing Mo and Cu are interesting because of the interrelation of both metals in numerous biological processes (the so-called Mo-Cu antagonism). Polynuclear compounds containing Cu⁺ and MoS_4^{2-} have a high formation tendency, the relative concentration of the reactants being the most important factor for the formation [6]. A corresponding compound with a cubane core and triply bridging MoS_4^{2-} ligands has also been characterized [8].

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen for financial support.

Atom	x	у	z	B ₁₁	B ₂₂	B ₃₃	B ₁₂	B ₁₃	B ₂₃
мо	0.2322(1)	0.4085(1)	0.1869(1)	2.45(9)	1.62(7)	2.68(9)	0.17(7)	0.47(8)	0.01(8)
CU1	0.1239(1)	0.2430(1)	0.1836(1)	2.63(13)	2.20(12)	2.82(13)	0.21(10)	0.21(10)	0.09(10)
CU2	0.2515(1)	0.5657(1)	0.1917(1)	4.45(16)	1.83(12)	3.62(14)	-0.02(11)	0.64(13) -	0.02(11)
S1	0.1671(3)	0.3376(3)	0.2612(3)	3.96(30)	2.35(24)	2.68(25)	0.07(21)	1.16(22)	0.10(21)
S2	0.1623(3)	0.4995(3)	0.1240(3)	4.60(34)	2.83(27)	3.69(27)	0.46(24)	-0.35(25)	0.50(23)
S3	0.3199(3)	0.4746(3)	0.2557(3)	3.93(32)	2.47(25)	4.33(30)	-0.60(23)	-0.62(26)	0.02(22)
S4	0.2783(3)	0.3253(3)	0.1083(3)	4.64(32)	2.24(23)	3.76(28)	0.04(24)	2.05(24) -	0.02(23)
P1	0.2941(3)	0.1664(3)	0.2620(3)	2.37(28)	2.04(24)	2.83(27)	0.39(21)	0.32(22)	0.21(21)
P2	0.1296(3)	0.1774(3)	0.1017(3)	2.83(28)	2.29(24)	2.79(26)	-0.17(23)	-0.10(22)	0.43(23)
Р3	0.2640(3)	0.6976(3)	0.1877(3)	3.23(30)	1.37(24)	4.09(30)	-0.10(21)	0.70(25) -	0.49(21)
Atom	x	у	Z	В	Atom	x	у	Z	В
C1	0.2464(6)	0.0968(7)	0.3197(6) 2.3(4)	C30	0.1736(6)	0.0253(6)	0.0516(6)	3.4(4)
C2	0.2038(6)	0.1278(7)	0.3738(6) 2.6(4)	C31	0.0602(5)	0.1157(6)	0.1425(7)	1.9(4)
C3	0.1691(6)	0.0759(7)	0.4207(6) 2.9(4)	C32	0.0646(5)	0.1067(6)	0.2211(7)	3.2(4)
C4	0.1771(6)	-0.0070(7)	0.4135(6) 4.2(5)	C33	0.0135(5)	0.0594(6)	0.2539(7)	4.0(5)
C5	0.2198(6)	-0.0380(7)	0.3594(6	5.6(6)	C34	-0.0419(5)	0.0210(6)	0.2081(7)	3.5(4)
C6	0.2545(6)	0.0139(7)	0.3125(6) 3.9(4)	C35	-0.0462(5)	0.0300(6)	0.1295(7)	5.0(5)
1⁄27	0.3614(6)	0.1061(6)	0.2155(7) 3.3(4)	C36	0.0048(5)	0.0773(6)	0.0967(7)	3.8(5)
C8	0.4201(6)	0.0686(6)	0.2571(7) 2.9(4)	C37	0.2731(7)	0.7355(7)	0.0923(5)	3.1(4)
C9	0.4704(6)	0.0246(6)	0.2199(7) 3.9(5)	C38	0.2179(7)	0.7152(7)	0.0359(5)	4.6(5)
C10	0.4621(6)	0.0182(6)	0.1410(7) 4.8(5)	C39	0.2236(7)	0.7380(7)	-0.0391(5)	5.5(6)
C11	0.4034(6)	0.0557(6)	0.0994(7) 4.1(5)	C40	0.2844(7)	0.7811(7)	-0.0577(5)	4.2(5)
C12	0.3531(6)	0.0996(6)	0.1366(7) 3.9(5)	C41	0.3395(7)	0.8014(7)	-0.0014(5)	5.0(5)
C13	0.3551(6)	0.2247(6)	0.3315(7) 2.1(4)	C42	0.3339(7)	0.7786(7)	0.0736(5)	4.7(5)
C14	0.3570(6)	0.2170(6)	0.4101(7	3.6(5)	C43	0.3413(5)	0.7410(7)	0.2485(6)	2.6(4)
C15	0.4072(6)	0.2613(6)	0.4572(7	4.7(5)	C44	0.3985(5)	0.6901(7)	0.2749(6)	3.1(4)
C16	0.4555(6)	0.3133(6)	0.4259(7	4.1(5)	C45	0.4570(5)	0.7200(7)	0.3227(6)	4.0(5)
C17	0.4536(6)	0.3211(6)	0.3473(7	3.9(4)	C46	0.4584(5)	0.8006(7)	0.3440(6)	5.7(6)
C18	0.4035(6)	0.2768(6)	0.3001(7) 3.4(4)	C47	0.4013(5)	0.8515(7)	0.3176(6)	3.5(5)
C19	0.0723(6)	0.2450(7)	0.0373(7	3.6(4)	C48	0.3427(5)	0.8216(7)	0.2698(6)	3.0(4)
C20	0.0485(6)	0.3155(7)	0.0697(7) 3.5(4)	C49	0.1844(5)	0.7519(7)	0.2158(6)	2.8(4)
C21	0.0029(6)	0.3683(7)	0.0262(7	4.2(5)	C50	0.1421(5)	0.7161(7)	0.2678(6)	3.3(4)
C22	-0.0189(6)	0.3506(7)	-0.0496(7	4.0(5)	C51	0.0815(5)	0.7564(7)	0.2908(6)	4.1(5)
C23	0.0050(6)	0.2801(7)	-0.0819(7	5.3(5)	C52	0.0632(5)	0.8324(7)	0.2617(6)	3.9(4)
C24	0.0506(6)	0.2273(7)	0.0385(7	5.2(5)	C53	0.1055(5)	0.8681(7)	0.2097(6)	4.3(5)
C25	0.1739(6)	0.1079(6)	0.0386(6)	2.1(4)	C54	0.1661(5)	0.8278(7)	0.1867(6)	2.9(4)
C26	0.2126(6)	0.1392(6)	-0.0187(6	4.0(5)	C	0.3630(8)	0.5546(16)	0.0351(22)	4.6(12)
C27	0.2508(6)	0.0879(6)	-0.0630(6)	4 7(5)	Č'	0.4394(24)	0.4981(9)	0.0722(17)	6.9(15)
C28	0.2505(6)	0.0053(6)	_0.0499(6	3 8(4)	CL1	0 4354(7)	0.5992(8)	0.0852(7)	17.4(5)
C29	0.2118(6)	-0.0260(6)	0.0074(6) 3.9(5)	CL2	0.3874(9)	0.4689(8)	-0.0077(9)	23.3(7)

TABLE I. Positional and Thermal (A²) Parameters^a for (PPh₃)₃Cu₂MoS₄•0.8CH₂Cl₂^b with Standard Deviations.

^aThe anisotropic temperature factor used is defined as exp $[-\frac{1}{4}(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}klb^*c^*)]$. ^bThe carbon atom in the CH₂Cl₂ solvent molecule occupies two positions (C and C'), which were both defined with an occupancy factor of 0.4.

References

- 1 E. Diemann and A. Müller, Coord. Chem. Rev., 10, 79 (1973).
- 2 E. J. Underwood, 'Trace elements in human and animal nutrition', 4th Ed., Academic Press, New York (1977). 3 M. P. Coughlan (Ed.), 'Molybdenum and Molybdenum-Containing Enzymes', Pergamon Press, Oxford and New
- York (1980).
- 4 C. F. Mills, Chem. Britain, 15, 512 (1979) and Phil. Trans. Roy. Soc. London, B288, 51 (1979) and references therein.
- 5 W. G. Zumft, European J. Biochem., 91, 345 (1978).
 6 A. Müller, H. Bögge, H. G. Tölle, R. Jostes, U. Schimanski and M. Dartmann, Angew. Chem. Int. Ed. Engl., in press.
- 7 A. Müller, H. Bögge and E. Königer-Ahlborn, Z. Naturforsch., 34b, 1698 (1979).
- 8 A. Müller, H. Bögge and U. Schimanski, J. Chem. Soc. Chem. Comm., 91 (1980).